One of the first steps during the investigation of geological objects is the interwell correlation. It provides information on the structure of the objects under study, as it comprises the framework for constructing geological models and assessing hydrocarbon reserves. Today, the detailed interwell correlation relies on manual analysis of well-logging data. Thus, it is time-consuming and of a subjective nature. The essence of the interwell correlation constitutes an assessment of the similarities between geological profiles. There were many attempts to automate the process of interwell correlation by means of rule-based approaches, classic machine learning approaches, and deep learning approaches in the past. However, most approaches are of limited usage and inherent subjectivity of experts. We propose a novel framework to solve the geological profile similarity estimation based on a deep learning model. Our similarity model takes well-logging data as input and provides the similarity of wells as output. The developed framework enables (1) extracting patterns and essential characteristics of geological profiles within the wells and (2) model training following the unsupervised paradigm without the need for manual analysis and interpretation of well-logging data. For model testing, we used two open datasets originating in New Zealand and Norway. Our data-based similarity models provide high performance: the accuracy of our model is $0.926$ compared to $0.787$ for baselines based on the popular gradient boosting approach. With them, an oil\&gas practitioner can improve interwell correlation quality and reduce operation time.


翻译:在地质物体调查过程中,首先采取的步骤之一是相互交错,它提供了研究对象结构的信息,因为它包括了建设地质模型和评估碳氢化合物储量的框架。今天,详细的相互交错取决于对井喷数据进行人工分析。因此,这是耗时和主观性的。相互交错的本质是评估地质剖面之间的相似性。许多尝试都试图通过基于规则的方法、经典机器学习方法以及过去深层次的学习方法实现相互交错过程自动化。然而,大多数方法的使用和专家固有的主观性都有限。我们提出了一个新的框架,以基于深层学习模式解决地质剖面相似性估算。我们相似性模型采用井喷数据作为投入,并提供类似产出的相似性。开发的框架使得(1) 提取井内地质剖面的格局和基本特征,(2) 采用非超常范式模式进行模型培训,而不需要人工分析和解释井喷数据。在模型测试中,我们使用了两个源自新西兰和挪威的开放数据集质化模型,以10美元为基的精确度为基准。我们的数据性模型的精确度比重:我们的数据精确度可以比重。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
A Survey on Data Augmentation for Text Classification
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关论文
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
A Survey on Data Augmentation for Text Classification
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
12+阅读 · 2018年1月11日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员