This work explores the use of constant-Q transform based modulation spectral features (CQT-MSF) for speech emotion recognition (SER). The human perception and analysis of sound comprise of two important cognitive parts: early auditory analysis and cortex-based processing. The early auditory analysis considers spectrogram-based representation whereas cortex-based analysis includes extraction of temporal modulations from the spectrogram. This temporal modulation representation of spectrogram is called modulation spectral feature (MSF). As the constant-Q transform (CQT) provides higher resolution at emotion salient low-frequency regions of speech, we find that CQT-based spectrogram, together with its temporal modulations, provides a representation enriched with emotion-specific information. We argue that CQT-MSF when used with a 2-dimensional convolutional network can provide a time-shift invariant and deformation insensitive representation for SER. Our results show that CQT-MSF outperforms standard mel-scale based spectrogram and its modulation features on two popular SER databases, Berlin EmoDB and RAVDESS. We also show that our proposed feature outperforms the shift and deformation invariant scattering transform coefficients, hence, showing the importance of joint hand-crafted and self-learned feature extraction instead of reliance on complete hand-crafted features. Finally, we perform Grad-CAM analysis to visually inspect the contribution of constant-Q modulation features over SER.
翻译:这项工作探索了使用以常态变换为基础的调制频谱特征(CQT-MSF)来进行语音情绪识别(SER),人类对声音的感知和分析由两个重要的认知部分组成:早期听觉分析和皮层处理。早期听觉分析考虑到光谱代表制,而皮层分析则包括从光谱中提取时间调制。光谱的暂时调制代表制特征被称为调制光谱特征(MSF)。随着常态变换(CQT)在情绪突出低频率的语音区域提供更高分辨率,我们发现基于CQT的光谱以及其时间调制式分析,提供了丰富了情感特定信息的体现。我们认为,CQT-MSF在使用二维感光谱网络时,可以为SER提供时间变换变异和变异变的感光谱特征。CQQT-MSF在两个流行性低频谱区域提供了更高分辨率的光谱特征分析,在两个普通的SER-SDER数据库中展示了我们不断变换的自我变异的自我数据库,在SIR-Develrial-Degal Stal Stal-Develop Stal Stal-Defal Stal Stal Stal Stal-Deform Stal Stal Stal Stal-SDBal-SDBDBDBY 上显示了我们SDBDBDU的自我变的变的自我变的自我变的变形、SU-SDBDBDBDBS-S-SU-SDBT和SDBSDV-SDBY-S-SDVDBT和S-S-S-SDVDVDU的自我变的变式数据库,在S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-G-G-SDB-S-G-SDBL-S-SDBL-SDB-S-SDB-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S