Spiking Transformers have gained considerable attention because they achieve both the energy efficiency of Spiking Neural Networks (SNNs) and the high capacity of Transformers. However, the existing Spiking Transformer architectures, derived from ANNs, exhibit a notable architectural gap, resulting in suboptimal performance compared to their ANN counterparts. Traditional approaches to discovering optimal architectures primarily rely on either manual procedures, which are time-consuming, or Neural Architecture Search (NAS) methods, which are usually expensive in terms of memory footprints and computation time. To address these limitations, we introduce AutoST, a training-free NAS method for Spiking Transformers, to rapidly identify high-performance and energy-efficient Spiking Transformer architectures. Unlike existing training-free NAS methods, which struggle with the non-differentiability and high sparsity inherent in SNNs, we propose to utilize Floating-Point Operations (FLOPs) as a performance metric, which is independent of model computations and training dynamics, leading to a stronger correlation with performance. Moreover, to enable the search for energy-efficient architectures, we leverage activation patterns during initialization to estimate the energy consumption of Spiking Transformers. Our extensive experiments show that AutoST models outperform state-of-the-art manually or automatically designed SNN architectures on static and neuromorphic datasets, while significantly reducing energy consumption.
翻译:暂无翻译