Deep learning is finding its way into high energy physics by replacing traditional Monte Carlo simulations. However, deep learning still requires an excessive amount of computational resources. A promising approach to make deep learning more efficient is to quantize the parameters of the neural networks to reduced precision. Reduced precision computing is extensively used in modern deep learning and results to lower execution inference time, smaller memory footprint and less memory bandwidth. In this paper we analyse the effects of low precision inference on a complex deep generative adversarial network model. The use case which we are addressing is calorimeter detector simulations of subatomic particle interactions in accelerator based high energy physics. We employ the novel Intel low precision optimization tool (iLoT) for quantization and compare the results to the quantized model from TensorFlow Lite. In the performance benchmark we gain a speed-up of 1.73x on Intel hardware for the quantized iLoT model compared to the initial, not quantized, model. With different physics-inspired self-developed metrics, we validate that the quantized iLoT model shows a lower loss of physical accuracy in comparison to the TensorFlow Lite model.
翻译:深层学习正在通过替换传统的蒙特卡洛模拟而进入高能物理。 但是,深层学习仍然需要大量的计算资源。 深层学习的一个更有希望的提高深层学习效率的方法是量化神经网络的参数以降低精确度。 现代深层学习和结果中广泛使用降低精确度的计算,以降低执行推断时间、 较小的记忆足迹和更少的记忆带宽。 在本文中,我们分析低精度推断对复杂深度基因化对立网络模型的影响。 我们所处理的利用案例是,在基于高能量物理的加速器中模拟亚原子粒子相互作用的热度计探测器。 我们使用创新的 Intel 低精度优化工具(i LoT) 进行量化,并将结果与TensorFlow Lite 的四分化模型进行比较。 在性基准中,我们对四分解 iLOT 模型的 Intel 硬件与初始的、非量化的模型相比速度提高了1.73x。 我们确认, 以不同的物理推导自制的自制测量模型表明, iLOT 模型与T 的物理精确度较低。