Software-defined Internet-of-Things networking (SDIoT) greatly simplifies the network monitoring in large-scale IoT networks by per-flow sampling, wherein the controller keeps track of all the active flows in the network and samples the IoT devices on each flow path to collect real-time flow statistics. There is a tradeoff between the controller's sampling preference and the balancing of loads among devices. On the one hand, the controller may prefer to sample some of the IoT devices on the flow path because they yield more accurate flow statistics. On the other hand, it is desirable to sample the devices uniformly so that their energy consumptions and lifespan are balanced. This paper formulates the flow sampling problem in large-scale SDIoT networks by means of a Markov decision process and devises policies that strike a good balance between these two goals. Three classes of policies are investigated: the optimal policy, the state-independent policies, and the index policies (including the Whittle index and a second-order index policies). The second-order index policy is the most desired policy among all: 1) in terms of performance, it is on an equal footing with the Whittle index policy, and outperforms the state-independent policies by much; 2) in terms of complexity, it is much simpler than the optimal policy, and is comparable to state-independent policies and the Whittle index policy; 3) in terms of realizability, it requires no prior information on the network dynamics, hence is much easier to implement in practice.


翻译:由软件定义的互联网网络(SDIOT)大大简化了在大型 IOT 网络中的网络监测,通过每流抽样,使控制者能够跟踪网络中所有活跃的流量,并抽样每个流程路径上的 IOT 设备,以收集实时流量统计数据。在控制者的抽样偏好与设备之间的负荷平衡之间存在着一种权衡。一方面,控制者可能更愿意在流程路径上抽取一些IOT 设备,因为它们能产生更准确的流量统计。另一方面,最好统一地对装置进行抽样,以便其能源消耗和寿命平衡。本文通过Markov 决策程序,在大型 SDIOT 网络中绘制流动抽样问题,并设计出在这两个目标之间保持良好平衡的政策。 调查了三类政策:最佳政策、依赖国家的政策以及指数政策(包括惠特尔指数和二级指数政策 ) 。 第二级指数政策是所有人中最理想的政策:1) 在实际绩效、能源消耗和寿命平衡性方面,从最简单的政策条件到最简单政策,从最起码的政策要求到最起码的政策。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
55+阅读 · 2020年3月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员