Society is characterized by the presence of a variety of social norms: collective patterns of sanctioning that can prevent miscoordination and free-riding. Inspired by this, we aim to construct learning dynamics where potentially beneficial social norms can emerge. Since social norms are underpinned by sanctioning, we introduce a training regime where agents can access all sanctioning events but learning is otherwise decentralized. This setting is technologically interesting because sanctioning events may be the only available public signal in decentralized multi-agent systems where reward or policy-sharing is infeasible or undesirable. To achieve collective action in this setting we construct an agent architecture containing a classifier module that categorizes observed behaviors as approved or disapproved, and a motivation to punish in accord with the group. We show that social norms emerge in multi-agent systems containing this agent and investigate the conditions under which this helps them achieve socially beneficial outcomes.


翻译:社会有各种各样的社会规范:集体制裁模式可以防止协调不力和自由驾驭。受此启发,我们的目标是在可能产生潜在有益的社会规范的地方构建学习动态;由于社会规范以制裁为基础,我们引入了培训制度,使代理人员能够利用所有制裁活动,但学习却分散。这种环境在技术上是有趣的,因为制裁事件可能是分散的多试剂系统中唯一可用的公共信号,在这种系统中,奖励或政策分享是不可行或不可取的。为了在这种环境下采取集体行动,我们建立了一个机构结构,其中包含一个分类模块,将观察到的行为归类为核准或不同意的行为,并有与该团体一道惩罚的动机。我们表明,在包含该代理人员的多试剂系统中出现了社会规范,并调查有助于他们取得社会效益的条件。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
user behavior understanding in real world settings
Arxiv
0+阅读 · 2022年1月12日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
相关论文
user behavior understanding in real world settings
Arxiv
0+阅读 · 2022年1月12日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员