The massive machine-type communications (mMTC) service will be part of new services planned to integrate the fifth generation of wireless communication (B5G). In mMTC, thousands of devices sporadically access available resource blocks on the network. In this scenario, the massive random access (RA) problem arises when two or more devices collide when selecting the same resource block. There are several techniques to deal with this problem. One of them deploys $Q$-learning (QL), in which devices store in their $Q$-table the rewards sent by the central node that indicate the quality of the transmission performed. The device learns the best resource blocks to select and transmit to avoid collisions. We propose a multi-power level QL (MPL-QL) algorithm that uses non-orthogonal multiple access (NOMA) transmit scheme to generate transmission power diversity and allow {accommodate} more than one device in the same time-slot as long as the signal-to-interference-plus-noise ratio (SINR) exceeds a threshold value. The numerical results reveal that the best performance-complexity trade-off is obtained by using a {higher {number of} power levels, typically eight levels}. The proposed MPL-QL {can deliver} better throughput and lower latency compared to other recent QL-based algorithms found in the literature
翻译:大型机器类型通信(MMTC)服务将是计划整合第五代无线通信(B5G)的新服务的一部分。在MMTC中,数千个设备零星访问网络上可用的资源区块。在这种情况下,当两个或两个以上的设备在选择同一个资源区块时相撞时,会出现大规模随机访问(RA)问题。有几种技术可以解决这个问题。其中一种技术是用Q$-learnology(QL),其中一种设备将显示传输质量的中央节点发送的奖赏存储在Q$-d-table中。该设备学习了选择和传输的最佳资源区,以避免碰撞。我们建议采用多功率级 QL(MPL-QL) 算法,使用非正态多重访问(NOMA) 传输计划生成传输能量多样性,允许 {accemmodate} 在同一时间段部署一个以上的设备,只要信号到干涉+NRIR(SINR) 比率超过临界值。该设备学习了最优的性能- QLQQQQL} 运算算法中,通过拟议的低性交易水平比最近性、最低性水平。