We propose a nonlinear reduced basis method for the efficient approximation of parametrized partial differential equations (PDEs), exploiting kernel proper orthogonal decomposition (KPOD) for the generation of a reduced-order space and neural networks for the evaluation of the reduced-order approximation. In particular, we use KPOD in place of the more classical POD, on a set of high-fidelity solutions of the problem at hand to extract a reduced basis. This method provides a more accurate approximation of the snapshots' set featuring a lower dimension, while maintaining the same efficiency as POD. A neural network (NN) is then used to find the coefficients of the reduced basis by following a supervised learning paradigm and shown to be effective in learning the map between the time/parameter values and the projection of the high-fidelity snapshots onto the reduced space. In this NN, both the number of hidden layers and the number of neurons vary according to the intrinsic dimension of the differential problem at hand and the size of the reduced space. This adaptively built NN attains good performances in both the learning and the testing phases. Our approach is then tested on two benchmark problems, a one-dimensional wave equation and a two-dimensional nonlinear lid-driven cavity problem. We finally compare the proposed KPOD-NN technique with a POD-NN strategy, showing that KPOD allows a reduction of the number of modes that must be retained to reach a given accuracy in the reduced basis approximation. For this reason, the NN built to find the coefficients of the KPOD expansion is smaller, easier and less computationally demanding to train than the one used in the POD-NN strategy.
翻译:我们建议一种非线性降低基数方法,用于有效近似超离性部分差异方程式(PDEs),利用内核正正正正正分分分解(KPOD),以生成一个减少排序空间和神经网络,用于评估降序近端;特别是,我们用KPOD来取代较古典的POD,以一系列高不洁问题解决方案为基础;这一方法可以更准确地近似近似近离差偏差(PDEs),同时保持与POD同样的效率。然后,使用一个神经网络(NNN)来寻找降低基数的系数,遵循一个受监督的学习模式和神经网络网络网络网络,以在时间/参数值接近度近近近近点时和神经网络之间学习地图。在这个NDOD中,隐藏层数和神经系统数随差异问题的内在层面变化而变化,在两个经调整的 NNNF网络中,一个经调整的精确度网络网络达到较精确的精确度系数,在学习/参数上,最后测试一个不以NDOD 标准测试一个我们提出的降低的PDOD做法,一个标准,一个测试一个标准到最后测试一个标准,一个测试一个标准,一个标准,一个标准,一个标准是我们提出的水平的不为标准,一个测试一个标准,一个标准,一个标准,一个标准,一个标准,一个标准,一个标准的计算为标准,一个标准,一个标准,一个标准,一个标准值为标准,一个标准,一个标准的计算值为标准值为标准值的计算方法为标准值为标准值为标准值为标准,一个标准。