In multivariate functional data analysis, different functional covariates can be homogeneous. The hidden homogeneity structure is informative about the connectivity or association of different covariates. The covariates with pronounced homogeneity can be analyzed jointly within the same group, which gives rise to a way of parsimoniously modeling multivariate functional data. In this paper, a novel grouped multivariate functional regression model with a new regularization approach termed "coefficient shape alignment" is developed to tackle the potential homogeneity of different functional covariates. The modeling procedure includes two main steps: first detect the unknown grouping structure with the new regularization approach to aggregate covariates into disjoint groups; and then the grouped multivariate functional regression model is established based on the detected grouping structure. In this new grouped model, the coefficient functions of covariates in the same homogeneous group share the same shape invariant to scaling. The new regularization approach builds on penalizing the discrepancy of coefficient shape. The consistency property of the detected grouping structure is thoroughly investigated, and the conditions that guarantee uncovering the underlying true grouping structure are developed. The asymptotic properties of the model estimates are also developed. Extensive simulation studies are conducted to investigate the finite-sample properties of the developed methods. The practical utility of the proposed methods is illustrated in the real data analysis on sugar quality evaluation. This work provides a novel means for analyzing the underlying homogeneity of functional covariates and developing parsimonious model structures for multivariate functional data.
翻译:暂无翻译