In a cloud radio access network (C-RAN), distributed remote radio heads (RRHs) are coordinated by baseband units (BBUs) in the cloud. The centralization of signal processing provides flexibility for coordinated multi-point transmission (CoMP) of RRHs to cooperatively serve user equipments (UEs). We target enhancing UEs' capacity performance, by jointly optimizing the selection of RRHs for serving UEs, i.e., resource allocation (and CoMP selection). We analyze the computational complexity of the problem. Next, we prove that under fixed CoMP selection, the optimal resource allocation amounts to solving a so-called iterated function. Towards user-centric network optimization, we propose an algorithm for the joint optimization problem, aiming at maximumly scaling up the capacity for any target UE group of interest. The proposed algorithm enables network-level performance evaluation for quality of experience.
翻译:在云无线电接入网络(C-RAN)中,分布式远程无线电头(RRHs)由云中的基带单位(BBUS)协调。信号处理的集中化为协调RRH的多点传输(COMP)提供了灵活性,为用户设备(UES)提供合作性服务。我们的目标是通过联合优化为UES服务而选择RRHs的能力性能,即资源分配(和选择COMP)来提高UIS的能力性能。我们分析了问题的计算复杂性。接下来,我们证明在固定的COMP选择下,最佳资源分配相当于解决所谓的迭代功能。为了实现以用户为中心的网络优化,我们提出了联合优化问题的算法,目的是最大限度地扩大任何目标UE集团的能力。拟议的算法使得网络一级的业绩评估能够符合经验的质量。