This paper develops and evaluates the performance of an allocation agent to be potentially integrated into the onboard Detect and Avoid (DAA) computer of an Unmanned Aircraft System (UAS). We consider a UAS that can be fully controlled by the onboard DAA system and by a remote human pilot. With a communication channel prone to latency, we consider a mixed initiative interaction environment, where the control authority of the UAS is dynamically allocated by the allocation agent. In an encounter with a dynamic intruder, the probability of collision may increase in the absence of pilot commands in the presence of latency. Moreover, a delayed pilot command may not result in safe resolution of the current scenario and need to be improvised. We design an optimization algorithm to reduce collision risk and refine delayed pilot commands. Towards this end, a Markov Decision Process (MDP)and its solution are employed to create a wait time map. The map consists of estimated times that the UAS can wait for the remote pilot commands at each state. A command blending algorithm is designed to select an avoidance maneuver that prioritizes the pilot intention extracted from the pilot commands. The wait time map and the command blending algorithm are implemented and integrated into a closed-loop simulator. We conduct ten thousands fast-time Monte Carlo simulations and compare the performance of the integrated setup with a standalone DAA setup. The simulation results show that the allocation agent enables the UAS to wait without inducing any near mid air collision (NMAC) and severe loss of well clear (LoWC) while positively improve pilot involvement in the encounter resolution.


翻译:本文开发并评估了可能被纳入无人驾驶航空器系统(无人驾驶航空器系统)的机上检测和避免(DAA)计算机的分配代理器的性能。 我们认为无人驾驶航空器系统(UAS)的性能可以完全由机上检测和避免(DAAS)系统和一个远程人类实验加以控制。 有了易于潜伏的通信渠道,我们考虑的是混合的倡议互动环境,分配代理商可以动态地分配统一分配UAS的控制权。 在遇到动态入侵者时,在有潜伏的情况下,如果没有试点指令,碰撞的可能性可能会增加。 此外,延迟的试点指令可能不会导致当前情景的安全解决,需要简易化。 我们设计了优化算法,以减少碰撞风险,并改进了延迟的试点指令。 朝着这一目的,利用了马尔科夫决策程序及其解决方案来创建一个等待时间图。 地图包含UAS可以等待各州的远程试点指令的估计时间。 任何指令混合算法都旨在选择一种避免操作操作的动作,将试点指令从试点指令的深度指令转换为当前情景的安全性解决方案,需要临时解决当前的情景,我们设计一个优化的优化。 我们设计一个优化的优化算算图,在不进行快速模拟模拟模拟中,同时将快速模拟操作的快速模拟操作,将运行中进行一个不进行。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员