Sentiment analysis is a branch of Natural Language Processing (NLP) which goal is to assign sentiments or emotions to particular sentences or words. Performing this task is particularly useful for companies wishing to take into account customer feedback through chatbots or verbatim. This has been done extensively in the literature using various approaches, ranging from simple models to deep transformer neural networks. In this paper, we will tackle sentiment analysis in the Noisy Intermediate Scale Computing (NISQ) era, using the DisCoCat model of language. We will first present the basics of quantum computing and the DisCoCat model. This will enable us to define a general framework to perform NLP tasks on a quantum computer. We will then extend the two-class classification that was performed by Lorenz et al. (2021) to a four-class sentiment analysis experiment on a much larger dataset, showing the scalability of such a framework.
翻译:感官分析是自然语言处理(NLP)的一个分支,目标是将情感或情感分配到特定的句子或文字上。 执行这项任务对于希望通过聊天机或逐字记录考虑到客户反馈的公司特别有用。 这项工作在文献中广泛采用多种方法,从简单的模型到深层变压器神经网络。 在本文中,我们将使用DisCoCat语言模型处理新式中等电子计算(NISQ)时代的情绪分析。 我们将首先介绍量子计算和DisCoCat模型的基本原理。 这将使我们能够界定一个在量子计算机上执行NLP任务的一般框架。 然后我们将扩大Lorenz等人(2021年)所完成的两类分类,到一个大得多的数据集的四级情绪分析实验,显示这种框架的可扩展性。