We study expected runtimes for quantum programs. Inspired by recent work on probabilistic programs, we first define expected runtime as a generalisation of quantum weakest precondition. Then, we show that the expected runtime of a quantum program can be represented as the expectation of an observable (in physics). A method for computing the expected runtimes of quantum programs in finite-dimensional state spaces is developed. Several examples are provided as applications of this method, including computing the expected runtime of quantum Bernoulli Factory -- a quantum algorithm for generating random numbers. In particular, using our new method, an open problem of computing the expected runtime of quantum random walks introduced by Ambainis et al. (STOC 2001) is solved.


翻译:我们研究量子方案的预期运行时间。根据最近关于概率程序的工作,我们首先将预期运行时间定义为对量子最弱的先决条件的概括。然后,我们证明量子方案的预期运行时间可以作为可观测(物理)的预期时间。我们开发了一种计算有限维度国家空间量子方案的预期运行时间的方法。作为这种方法的应用,我们提供了几个例子,包括计算量子伯努利工厂的预期运行时间,这是生成随机数字的量子算法。特别是使用我们的新方法,计算Ambainis等人引进的量子随机行走的预期运行时间(STOC,2001年)的公开问题得到解决。

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
专知会员服务
38+阅读 · 2021年4月27日
专知会员服务
44+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2021年4月27日
专知会员服务
44+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员