We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial $P(X)$ on a set of variables $X=\{x_1,\ldots,x_n\}$ and a linear matroid $M=(X,\mathcal{I})$ of rank $k$, both over a field $\mathbb{F}$ of characteristic 2, in $2^k$ evaluations we can sieve for those terms in the monomial expansion of $P$ which are multilinear and whose support is a basis for $M$. Alternatively, using $2^k$ evaluations of $P$ we can sieve for those monomials whose odd support spans $M$. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving $q$-Matroid Intersection in time $O^*(2^{(q-2)k})$ and $q$-Matroid Parity in time $O^*(2^{qk})$, improving on $O^*(4^{qk})$ (Brand and Pratt, ICALP 2021) 2. $T$-Cycle, Colourful $(s,t)$-Path, Colourful $(S,T)$-Linkage in undirected graphs, and the more general Rank $k$ $(S,T)$-Linkage problem, all in $O^*(2^k)$ time, improving on $O^*(2^{k+|S|})$ respectively $O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))})$ (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of $r$ solutions to a problem with a minimum mutual distance of $d$ in time $O^*(2^{r(r-1)d/2})$, improving solutions for $k$-Distinct Branchings from time $2^{O(k \log k)}$ to $O^*(2^k)$ (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from $O^*(2^{2^{O(rd)}})$ to $O^*(2^{r^2d/2})$ (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2.
翻译:我们介绍了决定性筛选,这是代数 FPT 算法工具箱中一个非常强大的新工具。给定一组变量 $X = \{x_1, ..., x_n\}$ 上的多项式 $P(X)$ 和一个秩为 $k$ 的线性拟阵 $M = (X, \mathcal{I})$,其中 $\mathcal{I}$ 是 $X$ 的子集族,均在特征为 2 的域 $\mathbb{F}$ 上,我们可以在 $2^k$ 次多项式 $P$ 的计算中,筛选出多项式展开中支持集合是 $M$ 的基且多项式是多项式是多线性的项。或者,利用 $P$ 的 $2^k$ 次计算,我们可以筛选出奇数支持跨度为 $M$ 的多项式。应用这个框架,我们在各种代数 FPT 算法上取得了改进,例如:
1. 在时间 $O^*(2^{(q-2)k})$ 内解决 $q$-Matroid 交集和 $q$-Matroid 恒等,优于 $O^*(4^{qk})$。
2. 在 $O^*(2^k)$ 的时间内解决了 $T$-Cycle,无向图中的 Colorful $(s,t)$-Path 和 Colorful $(S,T)$-Linkage 以及 Rank $k$ $(S,T)$-Linkage 问题。
3. 解决了 Diverse X 范式中的许多实例。
所有拟阵都假定在特征为 2 的域上呈现。在一般域上,通过在外代数上工作,我们可以以指数空间为代价获得类似的结果。对于我们称之为强单调的一类算术电路,甚至可以在不损失运行时间的情况下实现这一点。然而,奇异支持筛选结果似乎是特定于特征 2 的。