Bayesian optimization (BO) algorithms form a class of surrogate-based heuristics, aimed at efficiently computing high-quality solutions for numerical black-box optimization problems. The BO pipeline is highly modular, with different design choices for the initial sampling strategy, the surrogate model, the acquisition function (AF), the solver used to optimize the AF, etc. We demonstrate in this work that a dynamic selection of the AF can benefit the BO design. More precisely, we show that already a na\"ive random forest regression model, built on top of exploratory landscape analysis features that are computed from the initial design points, suffices to recommend AFs that outperform any static choice, when considering performance over the classic BBOB benchmark suite for derivative-free numerical optimization methods on the COCO platform. Our work hence paves a way towards AutoML-assisted, on-the-fly BO designs that adjust their behavior on a run-by-run basis.
翻译:贝叶斯优化(BO)算法形成了一种基于代位法的循环法,旨在高效计算数字黑盒优化问题的高质量解决方案。 BO管道是高度模块化的,对初始取样战略、代位模型、获取功能(AF)、用于优化AF的求解器等设计选项有不同的设计选择。 我们在这项工作中表明,动态选择AF可以有利于BO设计。更准确地说,我们显示,在最初设计点所计算的探索性景观分析特征之上已经建起的“动态随机森林回归模型 ”, 足以推荐超过任何静态选择的AFBBB基准套, 用于COCO平台上典型的无衍生数字优化方法。 因此,我们的工作铺平了一条通往自动ML辅助的、 飞行式的BO设计, 以逐个运行的方式调整他们的行为。