Acute lower respiratory infections caused by respiratory viruses are common and persistent infectious diseases worldwide and in China, which have pronounced seasonal patterns. Meteorological factors have important roles in the seasonality of some major viruses. Our aim was to identify the dominant meteorological factors and to model their effects on common respiratory viruses in different regions of China. We analysed monthly virus data on patients from 81 sentinel hospitals in 22 provinces in mainland China from 2009 to 2013. The geographical detector method was used to quantify the explanatory power of each meteorological factor, individually and interacting in pairs. 28369 hospitalised patients with ALRI were tested, 10387 were positive for at least one virus, including RSV, influenza virus, PIV, ADV, hBoV, hCoV and hMPV. RSV and influenza virus had annual peaks in the north and biannual peaks in the south. PIV and hBoV had higher positive rates in the spring summer months. hMPV had an annual peak in winter spring, especially in the north. ADV and hCoV exhibited no clear annual seasonality. Temperature, atmospheric pressure, vapour pressure, and rainfall had most explanatory power on most respiratory viruses in each region. Relative humidity was only dominant in the north, but had no significant explanatory power for most viruses in the south. Hours of sunlight had significant explanatory power for RSV and influenza virus in the north, and for most viruses in the south. Wind speed was the only factor with significant explanatory power for human coronavirus in the south. For all viruses, interactions between any two of the paired factors resulted in enhanced explanatory power, either bivariately or non-linearly.


翻译:2009年至2013年,我们分析了中国大陆22个省81个哨点医院患者的月度病毒数据。 地理探测器方法用于量化每个气象因素的辨别能力,单独和对口互动。 28369个患ALRI的住院病人接受了测试,10387对至少一种病毒具有积极性,包括RSV、流感病毒、PIV、ADV、HBOV、HCOV和HMPV。我们的目标是查明主要气象因素,并模拟其对中国不同地区常见呼吸道病毒的影响。我们分析了2009年至2013年中国大陆22个省81个哨点医院患者的月度病毒数据。我们分析了中国大陆22个省的81个哨点医院患者的月度病毒数据。使用地理探测器方法来量化每个气象因素的辨别能力。ADV和HCOV的住院病人每年的季节性都未见成效。 温度、大气压力、蒸汽压力和降雨至少一种病毒,包括RSV、HV、HV和HM病毒的季节性能,每年在南方最大呼吸道上达到高峰峰点。对于大多数呼吸道机压的病毒而言,相对机变变变变的机的机在南方的士中,仅有中,只有两个非解释性机变变压因素才具有重要。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员