This paper introduces the sequential CRT, which is a variable selection procedure that combines the conditional randomization test (CRT) and Selective SeqStep+. Valid p-values are constructed via the flexible CRT, which are then ordered and passed through the selective SeqStep+ filter to produce a list of discoveries. We develop theory guaranteeing control on the false discovery rate (FDR) even though the p-values are not independent. We show in simulations that our novel procedure indeed controls the FDR and are competitive with -- and sometimes outperform -- state-of-the-art alternatives in terms of power. Finally, we apply our methodology to a breast cancer dataset with the goal of identifying biomarkers associated with cancer stage.
翻译:本文介绍相继的 CRT,这是一个将有条件随机测试(CRT)和选择性 SeqStep+结合起来的可变选择程序。 有效的p值是通过灵活的 CRT 构建的, 然后通过选择性的 SeqStep+ 过滤器订购和传递, 以产生一份发现清单。 我们开发了理论, 保证对假发现率( FDR ) 的控制, 尽管 p- 值并不独立。 我们在模拟中显示, 我们的新程序确实控制了 FDR, 并且具有竞争力, 有时在权力方面超过了最先进的替代品。 最后, 我们运用了我们的方法, 用于乳腺癌数据集, 目的是识别与癌症阶段相关的生物标记 。