We propose a novel approach for computing committor functions, which describe transitions of a stochastic process between metastable states. The committor function satisfies a backward Kolmogorov equation, and in typical high-dimensional settings of interest, it is intractable to compute and store the solution with traditional numerical methods. By parametrizing the committor function in a matrix product state/tensor train format and using a similar representation for the equilibrium probability density, we solve the variational formulation of the backward Kolmogorov equation with linear time and memory complexity in the number of dimensions. This approach bypasses the need for sampling the equilibrium distribution, which can be difficult when the distribution has multiple modes. Numerical results demonstrate the effectiveness of the proposed method for high-dimensional problems.


翻译:我们提出了一个计算承诺函数的新办法,它描述了元状态之间随机过程的转变。承诺函数满足了后向的科尔莫戈罗夫方程式,在典型的高维利益环境中,用传统的数字方法计算和存储解决方案是难以的。通过将承诺函数以矩阵产品产品状态/密度列车格式进行对称,并使用类似的均衡概率密度表示,我们解决了后向的科尔莫戈罗夫方程式的变式配方,该方程式在尺寸数量上具有线性时间和记忆复杂性。这种方法绕过了对均衡分布进行抽样的需要,而当分布有多种模式时,平衡分布可能很困难。数字结果显示了高维度问题的拟议方法的有效性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员