Despite the unprecedented performance of deep neural networks (DNNs) in computer vision, their practical application in the diagnosis and prognosis of cancer using medical imaging has been limited. One of the critical challenges for integrating diagnostic DNNs into radiological and oncological applications is their lack of interpretability, preventing clinicians from understanding the model predictions. Therefore, we study and propose the integration of expert-derived radiomics and DNN-predicted biomarkers in interpretable classifiers which we call ConRad, for computerized tomography (CT) scans of lung cancer. Importantly, the tumor biomarkers are predicted from a concept bottleneck model (CBM) such that once trained, our ConRad models do not require labor-intensive and time-consuming biomarkers. In our evaluation and practical application, the only input to ConRad is a segmented CT scan. The proposed model is compared to convolutional neural networks (CNNs) which act as a black box classifier. We further investigated and evaluated all combinations of radiomics, predicted biomarkers and CNN features in five different classifiers. We found the ConRad models using non-linear SVM and the logistic regression with the Lasso outperform others in five-fold cross-validation, although we highlight that interpretability of ConRad is its primary advantage. The Lasso is used for feature selection, which substantially reduces the number of non-zero weights while increasing the accuracy. Overall, the proposed ConRad model combines CBM-derived biomarkers and radiomics features in an interpretable ML model which perform excellently for the lung nodule malignancy classification.


翻译:尽管深度神经网络(DNN)在计算机视觉领域表现出无与伦比的效果,但它们在使用医学成像进行癌症诊断和预后方面的实际应用却受到限制。将诊断DNN集成到放射学和肿瘤学应用中的其中一个重要挑战是缺乏可解释性,从而阻止临床医生理解模型预测。因此,我们研究并提出了对解析的放射学和DNN预测的生物标志物进行集成的可解释分类器,称为ConRad,即用于肺癌的计算机断层扫描(CT)。重要的是,肿瘤生物标志物是从概念瓶颈模型(CBM)中预测出来的,因此一旦训练完成,我们的ConRad模型不需要耗费人力和时间来提取生物标志物。在我们的评估和实际应用中,ConRad的唯一输入是分割的CT扫描。所提出的模型与作为黑盒分类器的卷积神经网络(CNN)进行了比较。我们进一步研究了并评估了五种不同分类器中所有放射学、预测的生物标志物和CNN特征的组合。我们发现,使用非线性SVM和Lasso的逻辑回归的ConRad模型在五折交叉验证中表现优异,尽管我们强调ConRad的可解释性是其主要优势。Lasso用于特征选择,可以大大减少非零权重的数量,同时提高准确性。总体而言,所提出的ConRad模型将CBM预测的生物标志物和放射学特征集成到可解释的ML模型中,对肺结节恶性肿瘤的分类表现出色。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
44+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员