We introduce arboreal categories, which have an intrinsic process structure, allowing dynamic notions such as bisimulation and back-and-forth games, and resource notions such as number of rounds of a game, to be defined. These are related to extensional or "static" structures via arboreal covers, which are resource-indexed comonadic adjunctions. These ideas are developed in a very general, axiomatic setting, and applied to relational structures, where the recently introduced comonadic constructions for pebbling, Ehrenfeucht-Fra\"iss\'e and modal bisimulation games are recovered, showing that many of the fundamental notions of finite model theory and descriptive complexity arise from instances of arboreal covers.
翻译:我们引入了有内在过程结构的 Arboreal 分类, 允许对刺激和反向游戏等动态概念以及游戏轮数等资源概念进行定义。 这些概念与通过 Arboreal 覆盖的延伸或“静态”结构有关, 它们是资源指数共生的共生结合。 这些概念是在非常笼统的、 不言而喻的环境下发展起来的, 并适用于关系结构, 其中最近引入的用于排泄的共生构型、 Ehrenfeucht-Fra\'is\'e 和 Modal 模拟游戏等资源概念得以恢复, 表明有限模型理论和描述复杂性的许多基本概念产生于arboreal 覆盖的实例。