We present a simple yet accurate method to compute the adjoint double layer potential, which is used to solve the Neumann boundary value problem for Laplace's equation in three dimensions. An expansion in curvilinear coordinates leads us to modify the expression for the adjoint double layer so that the singularity is reduced when evaluating the integral on the surface. We then regularize the Green's function, with a radial parameter $\delta$. We show that a natural regularization has error $O(\delta^3)$, and a simple modification improves the error to $O(\delta^5)$. The integral is evaluated numerically without the need of special coordinates. We use this treatment of the adjoint double layer to solve the classical integral equation for the interior Neumann problem and evaluate the solution on the boundary. Choosing $\delta = ch^{4/5}$, we find about $O(h^4)$ convergence in our examples, where $h$ is the spacing in a background grid.
翻译:暂无翻译