The analytic energy gradients in the atomic orbital representation have recently been published (J. Chem. Phys. 146, 014102, 2017) within the framework of the natural orbital functional theory (NOFT). We provide here an alternative expression for them in terms of natural orbitals, and use it to derive the analytic second-order energy derivatives with respect to nuclear displacements in the NOFT. The computational burden is shifted to the calculation of perturbed natural orbitals and occupancies, since a set of linear coupled-perturbed equations obtained from the variational Euler equations must be solved to attain the analytic Hessian at the perturbed geometry. The linear response of both natural orbitals and occupation numbers to nuclear geometry displacements need only specify the reconstruction of the second-order reduced density matrix in terms of occupation numbers.
翻译:最近,在自然轨道功能理论(NOFT)框架内公布了原子轨道代表中的分析能源梯度(J. Chem. Phys. 146, 014102, 2017年),我们在此以自然轨道功能理论(NOFT)为它们提供了一个替代表达方式,用于自然轨道学,并用来得出与NOFT核转移有关的分析第二阶能源衍生物。计算负担转向计算被扰动的自然轨道和占用,因为必须解决从变形埃勒方程式获得的一套线性连接和透波式方程,以便在相近的几何地测量中达到分析赫西恩,自然轨道和占用号对核几何位置转移的线性反应只需具体说明按占用数对第二阶降密度矩阵的重建。