The analytic energy gradients in the atomic orbital representation have recently been published (J. Chem. Phys. 146, 014102, 2017) within the framework of the natural orbital functional theory (NOFT). We provide here an alternative expression for them in terms of natural orbitals, and use it to derive the analytic second-order energy derivatives with respect to nuclear displacements in the NOFT. The computational burden is shifted to the calculation of perturbed natural orbitals and occupancies, since a set of linear coupled-perturbed equations obtained from the variational Euler equations must be solved to attain the analytic Hessian at the perturbed geometry. The linear response of both natural orbitals and occupation numbers to nuclear geometry displacements need only specify the reconstruction of the second-order reduced density matrix in terms of occupation numbers.


翻译:最近,在自然轨道功能理论(NOFT)框架内公布了原子轨道代表中的分析能源梯度(J. Chem. Phys. 146, 014102, 2017年),我们在此以自然轨道功能理论(NOFT)为它们提供了一个替代表达方式,用于自然轨道学,并用来得出与NOFT核转移有关的分析第二阶能源衍生物。计算负担转向计算被扰动的自然轨道和占用,因为必须解决从变形埃勒方程式获得的一套线性连接和透波式方程,以便在相近的几何地测量中达到分析赫西恩,自然轨道和占用号对核几何位置转移的线性反应只需具体说明按占用数对第二阶降密度矩阵的重建。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
13+阅读 · 2019年1月26日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员