We present DeepWiVe, the first-ever end-to-end joint source-channel coding (JSCC) video transmission scheme that leverages the power of deep neural networks (DNNs) to directly map video signals to channel symbols, combining video compression, channel coding, and modulation steps into a single neural transform. Our DNN decoder predicts residuals without distortion feedback, which improves video quality by accounting for occlusion/disocclusion and camera movements. We simultaneously train different bandwidth allocation networks for the frames to allow variable bandwidth transmission. Then, we train a bandwidth allocation network using reinforcement learning (RL) that optimizes the allocation of limited available channel bandwidth among video frames to maximize overall visual quality. Our results show that DeepWiVe can overcome the cliff-effect, which is prevalent in conventional separation-based digital communication schemes, and achieve graceful degradation with the mismatch between the estimated and actual channel qualities. DeepWiVe outperforms H.264 video compression followed by low-density parity check (LDPC) codes in all channel conditions by up to 0.0462 on average in terms of the multi-scale structural similarity index measure (MS-SSIM), while beating H.265 + LDPC by up to 0.0058 on average. We also illustrate the importance of optimizing bandwidth allocation in JSCC video transmission by showing that our optimal bandwidth allocation policy is superior to the na\"ive uniform allocation. We believe this is an important step towards fulfilling the potential of an end-to-end optimized JSCC wireless video transmission system that is superior to the current separation-based designs.
翻译:我们展示了DeepWiVe, 这是首个端到端联源-通道联合编码(JSCC)视频传输计划, 利用深神经网络(DNN)的力量, 直接将视频信号用于传输符号, 将视频压缩、 频道编码和调制步骤合并到单一神经转型中。 我们的 DNNN 解码器在没有扭曲反馈的情况下预测剩余内容, 从而通过计算封闭/ 分解和摄像头的移动来改善视频质量。 我们同时为框架培训不同带宽分配网络, 以允许可变带宽传输。 然后, 我们利用强化学习(RL) 来培训一个带宽分配网络, 优化在视频框架之间分配有限的频道带宽, 以尽量提高总体视觉质量。 我们的Deep WiVeVe可以克服悬崖效应, 在常规的基于分离的数字通信计划中, 并且通过估计的频道质量与实际频道质量之间的不匹配。 深WiVe 超越了基于高密度平比值的图像校制(LPC) 在所有频道条件中, 向上为0.0662- DMSD 平均配置, 显示我们的平均结构分配的HSDIS 。