Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) was presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes was built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.056% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance was stably reproducible among repetitive experiments for cross-validation. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery.


翻译:开发有效和高效的大脑-计算机界面(BCI)系统,精确地解码以电脑图测量的大脑活动,这是非常需要的。传统工作在不考虑电极之间地形关系的情况下对 EEEG 信号进行分类。然而,神经科学研究日益强调大脑动态的网络模式。因此,电极的Euclidean结构可能无法充分反映信号之间的相互作用。为了填补这一空白,根据图形共振神经网络(GCNs)提出了一个新的深层次学习框架,以加强不同类型运动图像任务中原始EEEG信号的解码性能,同时与电极功能的功能性表层关系进行合作。根据绝对Pearson的总体信号矩阵,EEEG电极电极的图性图性图解变模型已经建立起来。用图层变色层构建的GCN 网络,随后的集层缩小了水度,而完全连接的软质层则得出了最终的预测。 引入的方法显示,个人化和群体对电极级(MI) 和群体对电极性电极的测测测测测测测测测测的 EG值的 EEO 值 值 值 值 值 数据 已经分别在88 58% 和最高性 度上 的 的 和 数据 58% 的 和 的 的 数据 的 的 518度 5 的 的 的 5 5 数据 5 5 数据 5 的 和 的 数据 数据 5 5 5 数据 和 的 的 的 的 5 5 5 5 数据 值 值 的 和 数据 5 5 5 的 的 5 5 5 数据 数据 5 5 数据 的 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
GCNet:当Non-local遇见SENet
极市平台
11+阅读 · 2019年5月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
15+阅读 · 2019年4月4日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
37+阅读 · 2019年11月3日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
GCNet:当Non-local遇见SENet
极市平台
11+阅读 · 2019年5月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员