We propose a novel functional data framework for artifact extraction and removal to estimate brain electrical activity sources from EEG signals. Our methodology is derived on the basis of event related potential (ERP) analysis, and motivated by mapping adverse artifactual events caused by body movements and physiological activity originated outside the brain. A functional independent component analysis (FICA) based on the use of fourth moments is conducted on the principal component expansion in terms of B-spline basis functions. We extend this model setup by introducing a discrete roughness penalty in the orthonormality constraint of the functional principal component decomposition to later compute estimates of FICA. Compared to other ICA algorithms, our method combines a regularization mechanism stemmed from the principal eigendirections with a discrete penalization given by the $d$-order difference operator. In this regard, it allows to naturally control high-frequency remnants of neural origin overlapping latent artifactual eigenfunctions and thus to preserve this persistent activity at artifact extraction level. Furthermore, we introduce a new cross-validation method for the selection of the penalization parameter which uses shrinkage to asses the performance of the estimators for functional representations with larger basis dimension and excess of roughness. This method is used in combination with a kurtosis measure in order to provide the optimal number of independent components.The FICA model is illustrated at functional and longitudinal dimensions by an example on real EEG data where a subject willingly performs arm gestures and stereotyped physiological artifacts. Our method can be relevant in neurocognitive research and related fields, particularlly in situations where movement can bias the estimation of brain potentials.


翻译:我们提出一个新的人工制品提取和清除功能数据框架,以估计来自EEG信号的脑电动源。我们的方法是根据与事件相关的潜在(ERP)分析得出的,其动机是绘制由大脑外的身体运动和生理活动引起的有害原生事件图,根据使用四分钟进行功能独立的部件分析(ICSA),根据B-spline基函数对主要组成部分扩展进行功能性独立分析(FICA)。我们扩大这一模型的设置,在功能主要组成部分的正态性约束中引入一种离散的粗糙处罚,将其扩展至后来的FICA估算。与ICA的其他算法相比,我们的方法将源自主要天体运动和源于大脑运动的由大脑运动和由美元-顺序差异操作者提供的离散的惩罚性惩罚机制结合起来。在这方面,可以自然控制高频率的神经源残留,重叠的潜伏性耐动机能,从而保持这种耐久性的活动。此外,我们采用新的交叉验证方法选择惩罚性参数,该参数使用缩缩压来评估粗糙的大脑变化状况,在功能性分析中采用一种功能性结构结构结构的过度分析方法,在功能性分析中进行更精确的演算,在最佳的模型中可以进行更深的模型中进行一个说明。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年3月9日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员