This short note introduces a geometric representation for binary (or ternary) sequences. The proposed representation is linked to multivariate data plotting according to the radar chart. As an illustrative example, the binary Hamming transform recently proposed is geometrically interpreted. It is shown that codewords of standard Hamming code $\mathcal{H}(N=7,k=4,d=3)$ are invariant vectors under the Hamming transform. These invariant are eigenvectors of the binary Hamming transform. The images are always inscribed in a regular polygon of unity side, resembling triangular rose petals and/or ``thorns''. A geometric representation of the ternary Golay transform, based on the extended Golay $\mathcal{G}(N=12, k=6, d=6)$ code over $\operatorname{GF}(3)$ is also showed. This approach is offered as an alternative representation of finite-length sequences over finite prime fields.


翻译:本简短注释为二进制( 或永久) 序列引入了几何表达式。 提议的表达式与根据雷达图绘制的多变量数据绘图相关。 举例来说, 最近提议的二进制 Hamming 转换是几何解释的。 显示标准 Hamming 代码 $\ mathcal{H} (N= 7, k= 4, d=3) 的代号在 Hamming 变换 ( Hamming ) 下是不可变的矢量 。 这些非变量是二进制 Hamming 变换 的代号 。 这些图像总是被刻在一个常规的多边形中, 重复三角玫瑰花瓣和/ 或“ thorns' ” 。 根据扩展的 Golay $\ mathcal{ G} (N=12, k=6, d=6) 代码, 也显示为 $\ operatorname{ GFN} (3) 。 。 这个方法是作为固定主场上定数序列的替代表示 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员