IoT systems typically involve separate data collection and processing, and the former faces the scalability issue when the number of nodes increases. For some tasks, only the result of data fusion is needed. Then, the whole process can be realized in an efficient way, integrating the data collection and fusion in one step by over-the-air computation (AirComp). Its shortcoming, however, is signal distortion when channel gains of nodes are different, which cannot be well solved by transmission power control alone in times of deep fading. To address this issue, in this paper, we propose a multi-slot over-the-air computation (MS-AirComp) framework for the sum estimation in fading channels. Compared with conventional data collection (one slot for each node) and AirComp (one slot for all nodes), MS-AirComp is an alternative policy that lies between them, exploiting multiple slots to improve channel gains so as to facilitate power control. Specifically, the transmissions are distributed over multiple slots and a threshold of channel gain is set for distributed transmission scheduling. Each node transmits its signal only once, in the slot when its channel gain first gets above the threshold, or in the last slot when its channel gain remains below the threshold. Theoretical analysis gives the closed-form of the computation error in fading channels, based on which the optimal parameters are found. Noticing that computation error tends to be reduced at the cost of more transmission power, a method is suggested to control the increase of transmission power. Simulations confirm that the proposed method can effectively reduce computation error, compared with state-of-the-art methods.


翻译:IPT 系统通常涉及不同的数据收集和处理, 而前者在节点数量增加时面临可缩放问题。 对于某些任务, 只需要数据聚合的结果。 然后, 整个过程可以高效地实现, 将数据收集和聚合以超空计算( AirComp ) 的方式整合到一个步骤。 但是, 当节点的频道增益不同时, 其缺点是信号扭曲, 而这无法单独通过传输电源控制在深度缩小时得到很好的解决 。 为了解决这个问题, 在本文件中, 我们建议为淡化的频道估算总和建立一个多层的计算框架( MS- AirComp ) 。 与常规的数据收集( 每个节点各一个空格) 和 AirComp ( 所有节点各一个空格) 。 MS- AirComp 是它们之间的一种替代政策, 利用多个空档提高频道的增益, 从而便利电源控制。 具体地说, 传输分布在多个槽中, 频道获得的阈值被设定用于分布传输时间表。 每一个节点的传输信号仅以低于平流的递值为信号,,, 在最短的轨道的轨中, 在最接近的端点上找到的变速分析中,, 在最短的槽中, 在最短的槽中, 其最短的槽中, 找到的变的变的变的变的变的变的变的变的变的变速法是最, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员