We consider the problem of solving integer programs of the form $\min \{\,c^\intercal x\ \colon\ Ax=b, x\geq 0\}$, where $A$ is a multistage stochastic matrix in the following sense: the primal treedepth of $A$ is bounded by a parameter $d$, which means that the columns of $A$ can be organized into a rooted forest of depth at most $d$ so that columns not bound by the ancestor/descendant relation in the forest do not have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-parameter time $f(d,\|A\|_{\infty})\cdot n\log^{O(2^d)} n$, where $f$ is a computable function and $n$ is the number of rows of $A$. The algorithm works in the strong model, where the running time only measures unit arithmetic operations on the input numbers and does not depend on their bitlength. This is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear running time in the strong sense. For the case of two-stage stochastic integer programs, our algorithm works in time $2^{(2\|A\|_\infty)^{O(r(r+s))}}\cdot n\log^{O(rs)} n$. The algorithm can be also parallelized: we give an implementation in the PRAM model that achieves running time $f(d,\|A\|_{\infty})\cdot \log^{O(2^d)} n$ using $n$ processors. The main conceptual ingredient in our algorithms is a new proximity result for multistage stochastic integer programs. We prove that if we consider an integer program $P$, say with a constraint matrix $A$, then for every optimum solution to the linear relaxation of $P$ there exists an optimum (integral) solution to $P$ that lies, in the $\ell_{\infty}$-norm, within distance bounded by a function of $\|A\|_{\infty}$ and the primal treedepth of $A$. On the way to achieve this result, we prove a generalization and considerable improvement of a structural result of Klein for multistage stochastic integer programs.
翻译:我们考虑的是解决以美元为单位的整数程序的问题。 美元为单位的平面( 美元), c\ intercal x\\\ croom\ Ax=b, x\geq 0\ $美元, 美元是多阶段的随机矩阵: $A的原始树深度受一个参数 $d$的束缚, 这意味着$A 的柱可以组织成一个扎根的深度森林( $d$ ), 这样, 不受森林的祖先/ 后代关系约束的列不会在同一行有非零的条目。 我们给出了一个在固定的参数里解决这个问题的算法, $( d) 美元为多级的平面 美元 。 美元 美元为美元, 美元为美元, 美元, 美元为美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 一个扎根的行数。 这个模型里, 运算得有一定的算一个正常的算。