In this paper, under a general cost function $C$, we present a dynamic programming (DP) method to obtain an optimal sequential deterministic quantizer (SDQ) for $q$-ary input discrete memoryless channel (DMC). The DP method has complexity $O(q (N-M)^2 M)$, where $N$ and $M$ are the alphabet sizes of the DMC output and quantizer output, respectively. Then, starting from the quadrangle inequality, two techniques are applied to reduce the DP method's complexity. One technique makes use of the Shor-Moran-Aggarwal-Wilber-Klawe (SMAWK) algorithm and achieves complexity $O(q (N-M) M)$. The other technique is much easier to be implemented and achieves complexity $O(q (N^2 - M^2))$. We further derive a sufficient condition under which the optimal SDQ is optimal among all quantizers and the two techniques are applicable. This generalizes the results in the literature for binary-input DMC. Next, we show that the cost function of $\alpha$-mutual information ($\alpha$-MI)-maximizing quantizer belongs to the category of $C$. We further prove that under a weaker condition than the sufficient condition we derived, the aforementioned two techniques are applicable to the design of $\alpha$-MI-maximizing quantizer. Finally, we illustrate the particular application of our design method to practical pulse-amplitude modulation systems.


翻译:在本文中,在一般成本函数$C美元的情况下,我们提出了一个动态程序化(DP)方法,以获得美元输入离存储通道(DMC)的优化连续确定性量化器(SDQ),该方法具有复杂性$(q)(N-M)2M美元,其中美元和美元分别为DMC输出和量化输出的字母大小。然后,从夸角不平等开始,应用了两种技术来降低DP方法的复杂性。一种技术利用SO-Moran-Aggarwal-Wilber-Klawe(SMAWKK)算法(SMAWK)(SMAWKK)(SMAWK)算法(SMAWK),该方法具有复杂性$(q(N-M)M)美元。另一种技术更容易实施,并实现美元(q)(N2-M%2)的复杂度。我们进一步得出一个充分的条件,根据这种条件,最佳SDQ是所有夸度和两种技术都适用。这种技术可以将文献中的结果概括为正-inal-inal-imal $(MI) 下一步设计技术的成本,我们用我们用来再计算一个标准中,我们用来计算。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
250+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员