Spike sorting algorithms are used to separate extracellular recordings of neuronal populations into single-unit spike activities. The development of customized hardware implementing spike sorting algorithms is burgeoning. However, there is a lack of a systematic approach and a set of standardized evaluation criteria to facilitate direct comparison of both software and hardware implementations. In this paper, we formalize a set of standardized criteria and a publicly available synthetic dataset entitled Synthetic Simulations Of Extracellular Recordings (SSOER), which was constructed by aggregating existing synthetic datasets with varying Signal-To-Noise Ratios (SNRs). Furthermore, we present a benchmark for future comparison, and use our criteria to evaluate a simulated Resistive Random-Access Memory (RRAM) In-Memory Computing (IMC) system using the Discrete Wavelet Transform (DWT) for feature extraction. Our system consumes approximately (per channel) 10.72mW and occupies an area of 0.66mm$^2$ in a 22nm FDSOI Complementary Metal-Oxide-Semiconductor (CMOS) process.
翻译:秒数排序算法用于将神经种群的细胞外记录分为单单元钉钉活动。开发定制的硬件实施峰值分类算法正在迅速发展。然而,缺乏系统的方法和一套标准化的评价标准,以便利直接比较软件和硬件的实施。在本文件中,我们正式确定了一套标准化标准和公开提供的合成数据集,题为 " 外细胞记录合成模拟(SSSOER) ",这是通过将现有的合成数据集与不同的信号-噪音比率(SNRs)合并而构建的。此外,我们提出了今后比较的基准,并使用我们的标准来评价模拟的耐力随机失常内存(RRAM)内部计算机(IMC)系统,使用分离波变(DWT)进行特征提取。我们的系统大约消耗(每个频道)10.72mW,并在22nm的FDSOI 辅助金属-Ox-Smidicuryor(CMCOS)过程中占用0.66mm2美元的区域。