项目名称: 硅MEMS陀螺驱动/检测模态频率调谐自适应控制方法和实验研究

项目编号: No.61274117

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 盛蔚

作者单位: 北京航空航天大学

项目金额: 78万元

中文摘要: 驱动/检测模态的频率调谐特性对硅MEMS陀螺灵敏度和线性度有显著影响。除不断改进加工工艺提升模态对称性,运用自适应最优控制理论、通过建模-调谐控制-温度漂移抑制等三步骤使硅MEMS陀螺达到并保持调谐状态是更高性价比的技术途径。本项目1)针对电极配置灵活、可观性可控性强的环状硅MEMS陀螺,通过微机械力学分析和遗传优化算法精确建模;2)以模态谐振频率差为优化目标,以调谐电极偏置电压为控制手段,采用改进遗传算法结合模拟退火算法确定调谐控制的最优电压配置;3)引入带Lyapunov函数的自适应前馈反馈控制器抑制温度变化引起的驱动/检测模态频率失谐,提高动态响应速度和稳态跟踪精度。本项目基于实测数据完成建模和调谐控制,并通过同等条件实验验证陀螺驱动/检测模态谐振频率差和稳定性。结合现有驱动/检测技术基础和研究条件,实现实际环境下环状硅MEMS陀螺的调谐控制,将显著提升硅MEMS陀螺性能和成品率。

中文关键词: MEMS;陀螺;频率调谐;驱动;检测

英文摘要: Resonant frequency difference between driving and sensing modes are one of the most critical parameters that influences the sensitivity and linearity of silicon MEMS gyro. Other than improving the modes symmetry by manufacturing technics there is a more creative and economical way to suppress the resonant frequency difference between driving and sensing modes. Precise modeling, resonant frequency tuning control by micro electrodes, adaptive control to suppress the frequency drift caused by temperature will be studied in this project. 1) Ring-structure silicon MEMS gyro is chose for its abundant electrodes and good symmetry as well as controllability. Micro mechanics and system identification by genetic algorithm are combined to get more precise dynamic models of ring-structure silicon MEMS gyro. 2) Resonant frequency difference between driving and sensing modes is the aim of optimal control. The control voltages on those tuning electrodes are determined by a modified genetic algorithm and simulated annealing mechanism. 3) In order to suppress the frequency drift caused by temperature adaptive feed-forward and feedback control are applied with Lyapunov function to enhance both the robustness and stable precision of our tuning methods. True data will be used in modeling and frequency tuning-control; controlled gy

英文关键词: MEMS;gyro;frequency tunning;driving;sensing

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
33+阅读 · 2021年8月16日
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
39+阅读 · 2021年4月3日
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
54+阅读 · 2020年6月24日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
手把手教你使用 YOLOV5 训练目标检测模型
极市平台
1+阅读 · 2022年1月25日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
穿戴设备这场腕上争雄,谁能走到最后?
ZEALER订阅号
0+阅读 · 2021年12月5日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
63+阅读 · 2019年6月16日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
12+阅读 · 2021年10月22日
Arxiv
31+阅读 · 2020年9月21日
小贴士
相关主题
相关资讯
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
手把手教你使用 YOLOV5 训练目标检测模型
极市平台
1+阅读 · 2022年1月25日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
穿戴设备这场腕上争雄,谁能走到最后?
ZEALER订阅号
0+阅读 · 2021年12月5日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
63+阅读 · 2019年6月16日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员