Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
翻译:任务规划可能要求界定关于机器人需要采取行动的世界的各种领域知识。 为了改进这一努力,大型语言模型(LLMs)可用于在任务规划期间分分可能的未来行动,甚至直接生成行动序列,以自然语言授课,不附加域信息。然而,这些方法要么需要列出所有可能的下一个评分步骤,要么产生自由格式文本,其中可能包含在目前情况下对特定机器人不可能采取的行动。我们提出了一个程序LLM快速结构,使计划生成能够跨越不同环境、机器人能力和任务。我们的关键洞察力是促使LLM以类似程序的方式说明环境中现有行动和对象的规格,以及可以执行的示例程序。我们就通过减缩实验迅速的结构和生成限制提出具体建议,展示虚拟人类家庭任务中的艺术成功率,并将我们的方法放在桌面任务的实际机器人臂上。网站 Progprompt.github.