Large pre-trained language models (LPLM) have shown spectacular success when fine-tuned on downstream supervised tasks. Yet, it is known that their performance can drastically drop when there is a distribution shift between the data used during training and that used at inference time. In this paper we focus on data distributions that naturally change over time and introduce four new REDDIT datasets, namely the WALLSTREETBETS, ASKSCIENCE, THE DONALD, and POLITICS sub-reddits. First, we empirically demonstrate that LPLM can display average performance drops of about 88% (in the best case!) when predicting the popularity of future posts from sub-reddits whose topic distribution changes with time. We then introduce a simple methodology that leverages neural variational dynamic topic models and attention mechanisms to infer temporal language model representations for regression tasks. Our models display performance drops of only about 40% in the worst cases (2% in the best ones) when predicting the popularity of future posts, while using only about 7% of the total number of parameters of LPLM and providing interpretable representations that offer insight into real-world events, like the GameStop short squeeze of 2021
翻译:在对下游监管任务进行微调时,经过事先培训的大型语言模型(LPLM)表现出了惊人的成功。然而,人们知道,当培训期间使用的数据和在推论时间使用的数据之间发生分布变化时,它们的业绩可能会大幅下降,在培训期间使用的数据和在推论时间使用的数据之间发生分布变化时,在本文中,我们侧重于自然变化的数据分布,并引入了四种新的REDIT数据集,即WALLSTREETTETETETS、ASKSICT、AskSICT、DONALD和POLITICS子编辑。首先,我们从经验上表明,在预测未来职位的受欢迎程度时,LPLM总参数总数中只有大约7 %的受欢迎度下降(最好的是!),而在预测未来职位的受欢迎程度时,我们引入了一种简单的方法,利用神经变化动态主题模型和关注机制来推导时间语言模型对回归任务进行表述。我们的模型在预测最差的情况下,在预测未来职位受欢迎程度时,其表现只有大约40%(最佳的2%),同时仅使用LPLPLM总参数总参数的7 %和提供可解释的20- Streging的演示式,例如的20 Stilling的直观。