Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs (Gro-M$^3$s) for multivariate categorical data, which improve parsimony and interpretability. In Gro-M$^3$s, observed variables are partitioned into groups such that the latent membership is constant across variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we propose transparent identifiability conditions for both the unknown grouping structure and the associated model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet Gro-M$^3$s to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through an application to a functional disability dataset.
翻译:混合成员模式(MMMM)是复杂多变数据的潜在结构模型的流行组合。 MMMM没有强迫每个主体都属于一个单一组群,而是将特定对象的重量矢量分为不同组群部分。随着这种灵活性在独特识别、估计和解释参数方面出现挑战。在本条中,我们提议为多变量组合的MMMM(Gro-M$3$s)数据建立一个新的类别(Gro-M$3$s),该类别可以改善对等和可解释性。在Gro-M$3$s中,观察到的变量被分成一组,使潜在成员在一个组内各变量之间保持不变,但各组之间可能有所不同。当所有变量都属于一个组时,传统的潜在类模型就获得,而当每个变量属于本组时,则获得传统的MMMMMMM。新模型相当于概率变数的新变数的变数。理论上,我们为未知的组合结构和相关模型参数提出了透明的可识别性条件。在方法上,我们建议Bayesian 模式用于DrichGrolet Gro-MQ$3,但各组可以不同组的变量计算结果,我们通过Simlabilationalislationalestalationalizalationalalationalationalationalationalviewviewviewviewviewviewviews view化计算结果。