Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs (Gro-M$^3$s) for multivariate categorical data, which improve parsimony and interpretability. In Gro-M$^3$s, observed variables are partitioned into groups such that the latent membership is constant across variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we propose transparent identifiability conditions for both the unknown grouping structure and the associated model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet Gro-M$^3$s to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through an application to a functional disability dataset.


翻译:混合成员模式(MMMM)是复杂多变数据的潜在结构模型的流行组合。 MMMM没有强迫每个主体都属于一个单一组群,而是将特定对象的重量矢量分为不同组群部分。随着这种灵活性在独特识别、估计和解释参数方面出现挑战。在本条中,我们提议为多变量组合的MMMM(Gro-M$3$s)数据建立一个新的类别(Gro-M$3$s),该类别可以改善对等和可解释性。在Gro-M$3$s中,观察到的变量被分成一组,使潜在成员在一个组内各变量之间保持不变,但各组之间可能有所不同。当所有变量都属于一个组时,传统的潜在类模型就获得,而当每个变量属于本组时,则获得传统的MMMMMMM。新模型相当于概率变数的新变数的变数。理论上,我们为未知的组合结构和相关模型参数提出了透明的可识别性条件。在方法上,我们建议Bayesian 模式用于DrichGrolet Gro-MQ$3,但各组可以不同组的变量计算结果,我们通过Simlabilationalislationalestalationalizalationalalationalationalationalationalviewviewviewviewviewviewviews view化计算结果。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
128+阅读 · 2020年6月25日
专知会员服务
162+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
9+阅读 · 2021年10月31日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员