We propose a novel and efficient algorithm to model high-level topological structures of neuronal fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the geometry of white matter pathways in the brain. However, most tractography analysis methods are time consuming and intractable. We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers. Given the trajectories of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically significant events and calculate their point correspondence in the 3D brain space. Trajectory inter-distance is used as a parameter to control the granularity of the model that allows local or global representation of the tractogram. Using diffusion MRI data from Alzheimer's patient study, we extract tractography features from our model for distinguishing the Alzheimer's subject from the normal control. Software implementation of our algorithm is available on GitHub.
翻译:我们提出一种新的高效算法,以模拟神经纤维的高层次地形结构。 轨迹学在三个维度上构建了复杂的神经纤维,展示了大脑白物质路径的几何特征。 然而,大多数地形学分析方法都是耗时和棘手的。 我们开发了一个基于计算几何的地形学代表法,旨在简化白物质纤维的连通性。 鉴于神经纤维路径的轨迹,我们模拟了将具有几何意义的事件编码并计算其在3D脑空间的点对应的轨迹的演进。 轨迹间距被用作参数,用于控制模型的颗粒性,允许在本地或全球范围内显示直观。 我们利用阿尔茨海默氏病人研究的分布式磁共振成像数据,从模型中提取了地形学特征,以区分阿尔茨海默的正常控制对象。 我们的算法的软件应用在 GitHub 上可以找到。