This paper introduces Wasserstein Adversarially Regularized Graph Autoencoder (WARGA), an implicit generative algorithm that directly regularizes the latent distribution of node embedding to a target distribution via the Wasserstein metric. The proposed method has been validated in tasks of link prediction and node clustering on real-world graphs, in which WARGA generally outperforms state-of-the-art models based on Kullback-Leibler (KL) divergence and typical adversarial framework.
翻译:本文件介绍瓦塞尔斯坦反正正规化图形自动编码器(WARGA),这是一种隐含的基因算法,直接规范了通过瓦塞尔斯坦衡量标准嵌入目标分布的节点的潜在分布,在实际世界图上的链接预测和节点组合任务中,对拟议方法进行了验证,WARGA在实际世界图中一般都优于基于Kullback-Libel(KL)差异和典型对抗框架的最新模型。