For a digraph $D=(V(D), A(D))$, and a set $S\subseteq V(D)$ with $r\in S$ and $|S|\geq 2$, a directed $(S, r)$-Steiner path or, simply, an $(S, r)$-path is a directed path $P$ started at $r$ with $S\subseteq V(P)$. Two $(S, r)$-paths are said to be arc-disjoint if they have no common arc. Two arc-disjoint $(S, r)$-paths are said to be internally disjoint if the set of common vertices of them is exactly $S$. Let $\kappa^p_{S,r}(D)$ (resp. $\lambda^p_{S,r}(D)$) be the maximum number of internally disjoint (resp. arc-disjoint) $(S, r)$-paths in $D$. The directed path $k$-connectivity of $D$ is defined as $$\kappa^p_k(D)= \min \{\kappa^p_{S,r}(D)\mid S\subseteq V(D), |S|=k, r\in S\}.$$ Similarly, the directed path $k$-arc-connectivity of $D$ is defined as $$\lambda^p_k(D)= \min \{\lambda^p_{S,r}(D)\mid S\subseteq V(D), |S|=k, r\in S\}.$$ The directed path $k$-connectivity and directed path $k$-arc-connectivity are also called directed path connectivity which extends the path connectivity on undirected graphs to directed graphs and could be seen as a generalization of classical connectivity of digraphs. In this paper, we obtain complexity results for $\kappa^p_{S,r}(D)$ on Eulerian digraphs and symmetric digraphs, and $\lambda^p_{S,r}(D)$ on general digraphs. We also give bounds for the parameters $\kappa^p_k(D)$ and $\lambda^p_k(D)$.


翻译:(V) D= (D) 美元, A(D) 美元, 和一套 $S\ subseteq V(D) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 直接, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 路, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元,, 美元, 美元,, 美元, 美元, 美元,,, 美元, 美元, 美元,,, 美元,,,,,,,,,,,,,, 美元, 美元, 美元, 美元, 美元,, 美元,,,,, 美元, 美元, 美元, 美元, 美元, 美元, 美元,, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元,

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
0+阅读 · 2023年2月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员