The spread of hate speech and hateful imagery on the Web is a significant problem that needs to be mitigated to improve our Web experience. This work contributes to research efforts to detect and understand hateful content on the Web by undertaking a multimodal analysis of Antisemitism and Islamophobia on 4chan's /pol/ using OpenAI's CLIP. This large pre-trained model uses the Contrastive Learning paradigm. We devise a methodology to identify a set of Antisemitic and Islamophobic hateful textual phrases using Google's Perspective API and manual annotations. Then, we use OpenAI's CLIP to identify images that are highly similar to our Antisemitic/Islamophobic textual phrases. By running our methodology on a dataset that includes 66M posts and 5.8M images shared on 4chan's /pol/ for 18 months, we detect 173K posts containing 21K Antisemitic/Islamophobic images and 246K posts that include 420 hateful phrases. Among other things, we find that we can use OpenAI's CLIP model to detect hateful content with an accuracy score of 0.81 (F1 score = 0.54). By comparing CLIP with two baselines proposed by the literature, we find that CLIP outperforms them, in terms of accuracy, precision, and F1 score, in detecting Antisemitic/Islamophobic images. Also, we find that Antisemitic/Islamophobic imagery is shared in a similar number of posts on 4chan's /pol/ compared to Antisemitic/Islamophobic textual phrases, highlighting the need to design more tools for detecting hateful imagery. Finally, we make available (upon request) a dataset of 246K posts containing 420 Antisemitic/Islamophobic phrases and 21K likely Antisemitic/Islamophobic images (automatically detected by CLIP) that can assist researchers in further understanding Antisemitism and Islamophobia.


翻译:网络上仇恨言辞和仇恨图像的传播是一个重大问题,需要加以缓解,以改善我们的网络经验。 这项工作有助于通过对4chan / Pol/使用 OpenAI 的 CLIP 对4chan / Pol/ 4chan / Pol/ 4chan / Pol/ 使用 OpenAI 的 CLIP 进行多式分析, 检测和理解网上的仇恨内容。 这个庞大的预培训模式使用对比学习模式。 我们设计了一种方法,用Google 的 Outrial ALIP 和 手动图象来识别一套反犹太主义和伊斯兰恐惧性文字的词句。 然后,我们用 OpenAI 的 CLIP 的 CLIP 模型来识别与我们反犹主义/ 伊斯兰仇视性文字高度相似的图像。 通过在数据库中运行一个包含 6000 M 和 5. 5 millal 图像的准确性文件, 我们也可以通过 Caltial 4 的CIP 和 Cremode 10 中找到一个更准确性的文件。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员