The spread of hate speech and hateful imagery on the Web is a significant problem that needs to be mitigated to improve our Web experience. This work contributes to research efforts to detect and understand hateful content on the Web by undertaking a multimodal analysis of Antisemitism and Islamophobia on 4chan's /pol/ using OpenAI's CLIP. This large pre-trained model uses the Contrastive Learning paradigm. We devise a methodology to identify a set of Antisemitic and Islamophobic hateful textual phrases using Google's Perspective API and manual annotations. Then, we use OpenAI's CLIP to identify images that are highly similar to our Antisemitic/Islamophobic textual phrases. By running our methodology on a dataset that includes 66M posts and 5.8M images shared on 4chan's /pol/ for 18 months, we detect 173K posts containing 21K Antisemitic/Islamophobic images and 246K posts that include 420 hateful phrases. Among other things, we find that we can use OpenAI's CLIP model to detect hateful content with an accuracy score of 0.81 (F1 score = 0.54). By comparing CLIP with two baselines proposed by the literature, we find that CLIP outperforms them, in terms of accuracy, precision, and F1 score, in detecting Antisemitic/Islamophobic images. Also, we find that Antisemitic/Islamophobic imagery is shared in a similar number of posts on 4chan's /pol/ compared to Antisemitic/Islamophobic textual phrases, highlighting the need to design more tools for detecting hateful imagery. Finally, we make available (upon request) a dataset of 246K posts containing 420 Antisemitic/Islamophobic phrases and 21K likely Antisemitic/Islamophobic images (automatically detected by CLIP) that can assist researchers in further understanding Antisemitism and Islamophobia.
翻译:网络上仇恨言辞和仇恨图像的传播是一个重大问题,需要加以缓解,以改善我们的网络经验。 这项工作有助于通过对4chan / Pol/使用 OpenAI 的 CLIP 对4chan / Pol/ 4chan / Pol/ 4chan / Pol/ 使用 OpenAI 的 CLIP 进行多式分析, 检测和理解网上的仇恨内容。 这个庞大的预培训模式使用对比学习模式。 我们设计了一种方法,用Google 的 Outrial ALIP 和 手动图象来识别一套反犹太主义和伊斯兰恐惧性文字的词句。 然后,我们用 OpenAI 的 CLIP 的 CLIP 模型来识别与我们反犹主义/ 伊斯兰仇视性文字高度相似的图像。 通过在数据库中运行一个包含 6000 M 和 5. 5 millal 图像的准确性文件, 我们也可以通过 Caltial 4 的CIP 和 Cremode 10 中找到一个更准确性的文件。