A core interest in building Artificial Intelligence (AI) agents is to let them interact with and assist humans. One example is Dynamic Search (DS), which models the process that a human works with a search engine agent to accomplish a complex and goal-oriented task. Early DS agents using Reinforcement Learning (RL) have only achieved limited success for (1) their lack of direct control over which documents to return and (2) the difficulty to recover from wrong search trajectories. In this paper, we present a novel corpus-level end-to-end exploration (CE3) method to address these issues. In our method, an entire text corpus is compressed into a global low-dimensional representation, which enables the agent to gain access to the full state and action spaces, including the under-explored areas. We also propose a new form of retrieval function, whose linear approximation allows end-to-end manipulation of documents. Experiments on the Text REtrieval Conference (TREC) Dynamic Domain (DD) Track show that CE3 outperforms the state-of-the-art DS systems.
翻译:建立人工智能(AI)代理的核心利益在于让他们与人类互动和帮助人类。 一个例子是动态搜索(DS),它模拟了人类与搜索引擎代理一起工作的过程,以完成复杂和面向目标的任务。使用强化学习(RL)的早期DS代理只取得了有限的成功:(1) 他们缺乏对哪些文件要返回的直接控制,(2) 从错误的搜索轨迹中恢复的困难。在本文中,我们展示了一种新颖的物理级端到端探索(CE3)的方法来解决这些问题。在我们的方法中,整个文本材料压缩成一种全球低维代表制,使该代理能够进入完整的状态和行动空间,包括爆炸不足的地区。我们还提出了一种新的检索功能形式,其线性接近允许对文件进行端到端的操纵。关于文本REC(TREC)动态Domain (DD) 轨道的实验显示, CE3 超越了国家DS系统。