Training convolutional neural networks with a Lipschitz constraint under the $l_{2}$ norm is useful for provable adversarial robustness, interpretable gradients, stable training, etc. While 1-Lipschitz networks can be designed by imposing a 1-Lipschitz constraint on each layer, training such networks requires each layer to be gradient norm preserving (GNP) to prevent gradients from vanishing. However, existing GNP convolutions suffer from slow training, lead to significant reduction in accuracy and provide no guarantees on their approximations. In this work, we propose a GNP convolution layer called \methodnamebold\ (\methodabv) that uses the following mathematical property: when a matrix is {\it Skew-Symmetric}, its exponential function is an {\it orthogonal} matrix. To use this property, we first construct a convolution filter whose Jacobian is Skew-Symmetric. Then, we use the Taylor series expansion of the Jacobian exponential to construct the \methodabv\ layer that is orthogonal. To efficiently implement \methodabv, we keep a finite number of terms from the Taylor series and provide a provable guarantee on the approximation error. Our experiments on CIFAR-10 and CIFAR-100 show that \methodabv\ allows us to train provably Lipschitz, large convolutional neural networks significantly faster than prior works while achieving significant improvements for both standard and certified robust accuracies.


翻译:以利普西特标准为标准, 以利普西特标准为标准, 防止梯度消失。 然而, 现有的国产总值标准在培训过程中受到缓慢的制约, 导致精确度大幅下降, 并且无法保证其近似值。 在这项工作中, 我们提议一个名为\methodnamebold\\ (methodabiv)的国产总值平衡层, 使用以下数学属性: 当一个矩阵是 skew- Symlogy 时, 它的指数功能是 rit 或thopotictrt 矩阵。 为了使用这一属性, 我们首先建立一个叶戈比斯对称的递增过滤器。 然后, 我们用叶戈比斯指数的系列扩展来构建一个名为\methothodnamebold\ (methodadamav) 层, 它使用以下数学属性: 当一个矩阵是 Shew- Systew- Sylorvral 网络时, 它的指数可以大幅快速运行, 和 IM IMRILILIal 测试, 。 提供一个更快速的硬化的硬化的模型, 。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员