We propose a new learning algorithm to train spiking neural networks (SNN) using conventional artificial neural networks (ANN) as proxy. We couple two SNN and ANN networks, respectively, made of integrate-and-fire (IF) and ReLU neurons with the same network architectures and shared synaptic weights. The forward passes of the two networks are totally independent. By assuming IF neuron with rate-coding as an approximation of ReLU, we backpropagate the error of the SNN in the proxy ANN to update the shared weights, simply by replacing the ANN final output with that of the SNN. We applied the proposed proxy learning to deep convolutional SNNs and evaluated it on two benchmarked datasets of Fashion-MNIST and Cifar10 with 94.56% and 93.11% classification accuracy, respectively. The proposed networks could outperform other deep SNNs trained with tandem learning, surrogate gradient learning, or converted from deep ANNs. Converted SNNs require long simulation times to reach reasonable accuracies while our proxy learning leads to efficient SNNs with much smaller simulation times. The source codes of the proposed method are publicly available at https://github.com/SRKH/ProxyLearning.


翻译:我们建议使用传统人工神经网络(ANN)来培训神经神经网络(SNN),以传统人工神经网络(ANN)作为代理。我们将两个SNN和ANN网络(ANN)分别合并为一体化和火(IF)和RELU神经网络(RLU),由同一网络架构和共享合成重量组成。这两个网络的前路是完全独立的。如果假设IF神经网络以比率编码作为RELU的近似值,我们将在代理ANN更新共享重量时对SNN的错误进行反推,只需用SNN取代AN的最后输出。我们把拟议的代理学习应用到深革命型SNNNP(I)和ANN(ANN)网络),然后用两个基准数据集(Fashinchon-MNIST(I)和Cifar10)分别用94.56%和93.11%的分类精度进行评估。提议的网络可以比其他经过同步学习、模拟梯度学习或从深ANNS(NNW)培训的深度SNNP(S)的深层SNNP(S)错误学习后,则需要很长的模拟时间来进行模拟,以便模拟,以达到合理的合理的模拟,同时进行合理的模拟,而我们的代理学习。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
2+阅读 · 2022年9月28日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员