Machine learning (ML) model explainability has received growing attention, especially in the area related to model risk and regulations. In this paper, we reviewed and compared some popular ML model explainability methodologies, especially those related to Natural Language Processing (NLP) models. We then applied one of the NLP explainability methods Layer-wise Relevance Propagation (LRP) to a NLP classification model. We used the LRP method to derive a relevance score for each word in an instance, which is a local explainability. The relevance scores are then aggregated together to achieve global variable importance of the model. Through the case study, we also demonstrated how to apply the local explainability method to false positive and false negative instances to discover the weakness of a NLP model. These analysis can help us to understand NLP models better and reduce the risk due to the black-box nature of NLP models. We also identified some common issues due to the special natures of NLP models and discussed how explainability analysis can act as a control to detect these issues after the model has been trained.


翻译:机器学习(ML)模型解释性受到越来越多的注意,特别是在与示范风险和规章有关的领域。在本文件中,我们审查并比较了一些流行的ML模型解释性方法,特别是与自然语言处理模型有关的模型解释性方法。然后我们应用了NLP解释性方法之一 :从相关性促进(LRP)到NLP分类模式。我们使用LRP方法来为每个单词得出相关评分,这是一个局部解释性。然后将相关得分合并在一起,以实现模型的全球可变重要性。我们通过案例研究,还演示了如何应用当地可解释性方法来错误地发现NLP模型的缺点。这些分析有助于我们更好地理解NLP模型的弱点,并减少由于NLP模型的黑箱性质而带来的风险。我们还确定了由于NLP模型的特殊性质而存在的一些共同问题,并讨论了解释性分析如何作为在模型培训后发现这些问题的控制手段。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
11+阅读 · 2018年7月31日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员