Scene Rearrangement Planning (SRP) is an interior task proposed recently. The previous work defines the action space of this task with handcrafted coarse-grained actions that are inflexible to be used for transforming scene arrangement and intractable to be deployed in practice. Additionally, this new task lacks realistic indoor scene rearrangement data to feed popular data-hungry learning approaches and meet the needs of quantitative evaluation. To address these problems, we propose a fine-grained action definition for SRP and introduce a large-scale scene rearrangement dataset. We also propose a novel learning paradigm to efficiently train an agent through self-playing, without any prior knowledge. The agent trained via our paradigm achieves superior performance on the introduced dataset compared to the baseline agents. We provide a detailed analysis of the design of our approach in our experiments.
翻译:先前的工作界定了这项任务的行动空间,手工艺粗略粗糙的行动无法灵活地用于改变场景安排,难以实际部署。此外,这项新任务缺乏现实的室内场景重新排列数据,无法为流行的数据饥饿学习方法提供材料,无法满足定量评估的需要。为了解决这些问题,我们建议为SRP提出精细的精确行动定义,并引入大规模场景重新排列数据集。我们还提出了一个新的学习模式,通过自演来有效培训一个代理,而无需事先知道。通过我们模式培训的代理在引入的数据集上比基线代理更出色。我们详细分析了我们实验中的方法设计。