Scene Rearrangement Planning (SRP) is an interior task proposed recently. The previous work defines the action space of this task with handcrafted coarse-grained actions that are inflexible to be used for transforming scene arrangement and intractable to be deployed in practice. Additionally, this new task lacks realistic indoor scene rearrangement data to feed popular data-hungry learning approaches and meet the needs of quantitative evaluation. To address these problems, we propose a fine-grained action definition for SRP and introduce a large-scale scene rearrangement dataset. We also propose a novel learning paradigm to efficiently train an agent through self-playing, without any prior knowledge. The agent trained via our paradigm achieves superior performance on the introduced dataset compared to the baseline agents. We provide a detailed analysis of the design of our approach in our experiments.


翻译:先前的工作界定了这项任务的行动空间,手工艺粗略粗糙的行动无法灵活地用于改变场景安排,难以实际部署。此外,这项新任务缺乏现实的室内场景重新排列数据,无法为流行的数据饥饿学习方法提供材料,无法满足定量评估的需要。为了解决这些问题,我们建议为SRP提出精细的精确行动定义,并引入大规模场景重新排列数据集。我们还提出了一个新的学习模式,通过自演来有效培训一个代理,而无需事先知道。通过我们模式培训的代理在引入的数据集上比基线代理更出色。我们详细分析了我们实验中的方法设计。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2018年10月5日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员