Constant Function Market Makers (CFMMs) are a tool for creating exchange markets, have been deployed effectively in prediction markets, and are now especially prominent in the Decentralized Finance ecosystem. We show that for any set of beliefs about future asset prices, an optimal CFMM trading function exists that maximizes the fraction of trades that a CFMM can settle. We formulate a convex program to compute this optimal trading function. This program, therefore, gives a tractable framework for market-makers to compile their belief function on the future prices of the underlying assets into the trading function of a maximally capital-efficient CFMM. Our convex optimization framework further extends to capture the tradeoffs between fee revenue, arbitrage loss, and opportunity costs of liquidity providers. Analyzing the program shows how the consideration of profit and loss leads to a qualitatively different optimal trading function. Our model additionally explains the diversity of CFMM designs that appear in practice. We show that careful analysis of our convex program enables inference of a market-maker's beliefs about future asset prices, and show that these beliefs mirror the folklore intuition for several widely used CFMMs. Developing the program requires a new notion of the liquidity of a CFMM, and the core technical challenge is in the analysis of the KKT conditions of an optimization over an infinite-dimensional Banach space.
翻译:常态市场元件(CFMMs)是创造外汇市场的工具,在预测市场中得到了有效部署,现在在分散金融生态系统中尤为突出。我们表明,对于任何一套关于未来资产价格的信念而言,CFMMM交易功能是最佳的,可以最大限度地增加CFMM能够解决的交易的一小部分。我们制定了计算这种最佳交易功能的螺旋程序。因此,这个程序为市场决策者提供了一个可移动的框架,将他们关于潜在资产未来价格的信念汇编成一个最高资本效率的CFMM的交易功能。我们的 convex优化框架进一步扩展,以捕捉到税收收入、套利损失和流动性提供者的机会成本之间的权衡。对该方案的分析表明,对利润和损失的考虑如何导致一个质量上不同的最佳交易功能。我们的模式进一步解释了CFMMMM的多样化设计在实践中表现出来。我们仔细分析我们的CFMMMD方案,可以推断出市场制造商对未来资产价格的信念,并显示这些信念反映了对广泛使用的CFMMMM的货币直观和货币供应商的机会成本。 开发CFMMMC的核心空间条件是CFMMMM的一个新的分析。</s>