Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps protect organizations against cyber-attacks on their computer and network systems. Adversaries hold an asymmetric advantage over the CSOC, as the number of deficiencies in these systems is increasing at a significantly higher rate compared to the expansion rate of the security teams to mitigate them in a resource-constrained environment. The current approaches are deterministic and one-time decision-making methods, which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation. These approaches are also constrained by the sub-optimal distribution of resources, providing no flexibility to adjust their response to fluctuations in vulnerability arrivals. We propose a novel framework, Deep VULMAN, consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in the cyber vulnerability management process. Our sequential decision-making framework, first, determines the near-optimal amount of resources to be allocated for mitigation under uncertainty for a given system state and then determines the optimal set of prioritized vulnerability instances for mitigation. Our proposed framework outperforms the current methods in prioritizing the selection of important organization-specific vulnerabilities, on both simulated and real-world vulnerability data, observed over a one-year period.
翻译:网络脆弱性管理是一个网络安全业务中心(COSOC)的关键功能,它有助于保护各组织免受计算机和网络系统的网络攻击。相反,它们比COSC拥有不对称优势,因为这些系统中的缺陷数目的增加速度大大高于安全小组在资源紧张的环境中为减轻这些缺陷而扩大的速度。目前的方法是确定性和一次性的决策方法,在确定和选择缓解脆弱性的优先次序时不考虑未来的不确定性。这些方法还受到资源分最佳分配的限制,无法灵活地调整它们对抵达的脆弱性的波动的反应。我们提出了一个新的框架,Deep VULMAN,其中包括一个深度强化学习代理和一种整齐的方案编制方法,以填补网络脆弱性管理进程中的这一差距。我们依次的决策框架首先确定在特定系统状态不确定的情况下分配用于缓解的近最佳资源量,然后确定一套最佳的缓解脆弱性优先案例。我们提议的框架在模拟和现实世界脆弱性数据周期上都超越了当前选择重要组织特定脆弱性的优先次序。