Single image generative models perform synthesis and manipulation tasks by capturing the distribution of patches within a single image. The classical (pre Deep Learning) prevailing approaches for these tasks are based on an optimization process that maximizes patch similarity between the input and generated output. Recently, however, Single Image GANs were introduced both as a superior solution for such manipulation tasks, but also for remarkable novel generative tasks. Despite their impressiveness, single image GANs require long training time (usually hours) for each image and each task. They often suffer from artifacts and are prone to optimization issues such as mode collapse. In this paper, we show that all of these tasks can be performed without any training, within several seconds, in a unified, surprisingly simple framework. We revisit and cast the "good-old" patch-based methods into a novel optimization-free framework. We start with an initial coarse guess, and then simply refine the details coarse-to-fine using patch-nearest-neighbor search. This allows generating random novel images better and much faster than GANs. We further demonstrate a wide range of applications, such as image editing and reshuffling, retargeting to different sizes, structural analogies, image collage and a newly introduced task of conditional inpainting. Not only is our method faster ($\times 10^3$-$\times 10^4$ than a GAN), it produces superior results (confirmed by quantitative and qualitative evaluation), less artifacts and more realistic global structure than any of the previous approaches (whether GAN-based or classical patch-based).


翻译:单一图像基因化模型通过捕捉单个图像中的补丁分布来执行合成和操作任务。 古典( 深习前) 用于这些任务的流行方法基于优化进程, 使输入和生成输出之间的相似性最大化。 然而, 最近, 单一图像 GAN 被引入为这种处理任务的优异解决方案, 但也引入了非凡的新颖基因化任务 。 尽管单个图像 GAN 具有令人印象深刻的特性, 单个图像GAN 需要长时间( 通常时数) 来完成每个图像和每项任务。 它们经常受到人工制品的影响, 并且容易优化诸如模式崩溃等问题。 在本文中, 我们展示所有这些任务可以在不经过任何培训的情况下, 在几秒钟内, 在一个统一、 令人惊讶的简单框架内, 将“ 古老的” 补丁方法 引入到一个新型的不优化框架。 我们从最初的粗略的猜测开始, 然后简单地通过近距离的搜索, 来改进细节, 粗略到粗略的到粗略的。 这样可以产生随机的缩缩缩的图像方法, 比GAN 。 我们进一步展示了广泛的应用范围,,, 而不是新版的缩的系统化了10 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年11月29日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员