We study the learnability of symbolic finite state automata (SFA), a model shown useful in many applications in software verification. The state-of-the-art literature on this topic follows the query learning paradigm, and so far all obtained results are positive. We provide a necessary condition for efficient learnability of SFAs in this paradigm, from which we obtain the first negative result. The main focus of our work lies in the learnability of SFAs under the paradigm of identification in the limit using polynomial time and data, and its strengthening efficient identifiability, which are concerned with the existence of a systematic set of characteristic samples from which a learner can correctly infer the target language. We provide a necessary condition for identification of SFAs in the limit using polynomial time and data, and a sufficient condition for efficient learnability of SFAs. From these conditions we derive a positive and a negative result. Since the performance of a learning algorithm is bounded as a function of the size of the representation of the target language and since SFAs, in general, do not have a canonical form, and there are trade-offs between the complexity of the predicates on the transitions and the number of transitions, we start by defining size measures for SFAs. We revisit the complexity of procedures on SFAs and analyze them according to these measures, paying attention to the special forms of SFAs: normalized SFAs and neat SFAs, as well as to SFAs over a monotonic effective Boolean algebra. This is an extended version of the paper with the same title published in CSL'22.


翻译:我们研究的是象征性的限定国家自动数据(SFA)的可学习性,这是在软件核查的许多应用中显示的有用模型。关于这个主题的最先进的文献遵循了查询学习模式,到目前为止,所有获得的结果都是积极的。我们为在这一模式中高效地学习SFA提供了必要的条件,我们从中取得了第一个负面结果。我们工作的主要重点是在使用多元时间和数据确定界限的范式下,学习SFA的可学习性,以及它加强了有效的可识别性,这关系到是否存在一套系统化的典型样本,学习者可以从中正确推断目标语言。我们为使用多元时间和数据确定限制范围内的SFAS的可有效学习性提供了一个必要的条件,我们从这些条件中取得了一个积极和消极的结果。由于学习算法的表现与目标语言和数据表达方式的注意程度不同,一般而言,SFA没有一种正常的形式,因此,学习者可以正确推断目标语言的正常形式。我们提供了一个使用多元时间和数据来识别限制限制限制限制范围内的SFAFA系统,我们从S的变价和变法的等级到S级程序之间,我们从S-AFA级程序的变换到S-S-S-S-S-RA的等级程序是S-S-S-S-RA的等级的等级的等级的等级的等级的等级的等级和结构的变式的等级的变。

0
下载
关闭预览

相关内容

【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
136+阅读 · 2022年11月5日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员