We show how neural models can be used to realize piece-wise constant functions such as decision trees. Our approach builds on ReLU networks that are piece-wise linear and hence their associated gradients with respect to the inputs are locally constant. We formally establish the equivalence between the classes of locally constant networks and decision trees. Moreover, we highlight several advantageous properties of locally constant networks, including how they realize decision trees with parameter sharing across branching / leaves. Indeed, only $M$ neurons suffice to implicitly model an oblique decision tree with $2^M$ leaf nodes. The neural representation also enables us to adopt many tools developed for deep networks (e.g., DropConnect (Wan et al. 2013)) while implicitly training decision trees. We demonstrate that our method outperforms alternative techniques for training oblique decision trees in the context of molecular property classification and regression tasks.


翻译:我们展示了神经模型如何能用于实现决策树等整块不变功能。 我们的方法以ReLU网络为基础,这些网络是整片线性,因此其投入的相关梯度是本地固定的。 我们正式确定本地常态网络和决定树的等同性。 此外, 我们强调本地常态网络的若干优点, 包括它们如何实现决策树, 其参数在分支/ 叶之间共享。 事实上, 只有$M 的神经元足以隐含地模拟一个带有2 ⁇ M$叶节点的隐性决定树。 神经显示还使我们能够采用为深层网络开发的许多工具( 例如, DrompConect (Wan等人,2013年) ), 同时隐含地培训决策树。 我们证明我们的方法在分子财产分类和回归任务的背景下, 超越了培训偏斜决定树的替代技术。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
9+阅读 · 2018年5月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员