Inverse problems with spatiotemporal observations are ubiquitous in scientific studies and engineering applications. In these spatiotemporal inverse problems, observed multivariate time series are used to infer parameters of physical or biological interests. Traditional solutions for these problems often ignore the spatial or temporal correlations in the data (static model), or simply model the data summarized over time (time-averaged model). In either case, the data information that contains the spatiotemporal interactions is not fully utilized for parameter learning, which leads to insufficient modeling in these problems. In this paper, we apply Bayesian models based on spatiotemporal Gaussian processes (STGP) to the inverse problems with spatiotemporal data and show that the spatial and temporal information provides more effective parameter estimation and uncertainty quantification (UQ). We demonstrate the merit of Bayesian spatiotemporal modeling for inverse problems compared with traditional static and time-averaged approaches using a time-dependent advection-diffusion partial different equation (PDE) and three chaotic ordinary differential equations (ODE). We also provide theoretic justification for the superiority of spatiotemporal modeling to fit the trajectories even it appears cumbersome (e.g. for chaotic dynamics).
翻译:超时观测的反面问题存在于科学研究和工程应用中。在这些超时问题中,观测到的多变时间序列被用来推断物理或生物利益的参数。这些问题的传统解决办法往往忽视数据(静态模型)中的空间或时间相关性,或只是模拟随时间推算的数据(时间平均模型)。在这两种情况下,含有超时相互作用的数据信息都没有被充分用于参数学习,导致这些问题的模型化不足。在本文中,我们运用基于超时高频过程的巴耶斯模型来推断物理或生物利益的参数。这些问题的传统解决办法往往忽视数据(静态模型)中的空间或时间相关性,或只是模拟随时间推算的数据(时间平均模型)。我们展示了贝耶斯的波多时模型的优点,用时间依赖的适应性适应性调整部分不同方程式和三个混乱的普通变异方形模型来反向问题。我们似乎也为空间和时空模型的高度提供了反复性动力学理由。我们似乎也为磁性模型的高度提供了。