Unmanned Aerial Vehicles (UAVs) are known for their fast and versatile applicability. With UAVs' growth in availability and applications, they are now of vital importance in serving as technological support in search-and-rescue(SAR) operations in marine environments. High-resolution cameras and GPUs can be equipped on the UAVs to provide effective and efficient aid to emergency rescue operations. With modern computer vision algorithms, we can detect objects for aiming such rescue missions. However, these modern computer vision algorithms are dependent on numerous amounts of training data from UAVs, which is time-consuming and labor-intensive for maritime environments. To this end, we present a new benchmark suite, SeaDroneSim, that can be used to create photo-realistic aerial image datasets with the ground truth for segmentation masks of any given object. Utilizing only the synthetic data generated from SeaDroneSim, we obtain 71 mAP on real aerial images for detecting BlueROV as a feasibility study. This result from the new simulation suit also serves as a baseline for the detection of BlueROV.
翻译:无人驾驶航空飞行器(无人驾驶飞行器)以其快速和多用途的可应用性而著称。随着无人驾驶飞行器的可用性和应用性的增长,它们现在在海洋环境搜索和救援(SAR)行动中作为技术支持至关重要。高分辨率照相机和GPU可在无人驾驶飞行器上安装,以便为紧急救援行动提供有效和高效的援助。借助现代计算机视觉算法,我们可以探测目标救援飞行任务的物体。然而,这些现代计算机视觉算法依赖于无人驾驶飞行器的大量培训数据,而无人驾驶飞行器对海洋环境来说既耗时又耗费大量人力。为此,我们提出一个新的基准套件,即SeaidroneSim,可用于创建具有地面真相的摄影现实航空图像数据集,用于任何特定物体的分离面罩。我们仅利用SeaDroneSim产生的合成数据,就能获得71兆AP的真航空图像,用于探测蓝色紫外线,作为可行性研究。新模拟诉讼的结果也作为BlueROV的基线。